Diferencia entre revisiones de «Mentefacto intersección conjuntos»
m (Insertar imágenes referente al tema en la argumentación y corrección del mentefacto conceptual.) |
m (Correccion mentefacto conceptual) |
||
Línea 1: | Línea 1: | ||
[[Archivo: | [[Archivo:Interseccion mentefacto.jpg|centro|miniaturadeimagen|785x785px|Mentefacto conceptual intersección de conjuntos]] | ||
----'''<big>Paquete proposicional.-</big>''' | ----'''<big>Paquete proposicional.-</big>''' | ||
Línea 11: | Línea 11: | ||
<u>P2.2.-</u> Toda intersección de conjuntos es operación que se le representa con el símbolo "∩". | <u>P2.2.-</u> Toda intersección de conjuntos es operación que se le representa con el símbolo "∩". | ||
'''Exclusión:''' | '''Exclusión:''' | ||
Línea 28: | Línea 26: | ||
Archivo:Mentefacto tipo A-2.png|<u>P2.1.-</u> Toda intersección de conjuntos es operación que da un conjunto solución con los elementos comunes entre 2 o más conjuntos. | Archivo:Mentefacto tipo A-2.png|<u>P2.1.-</u> Toda intersección de conjuntos es operación que da un conjunto solución con los elementos comunes entre 2 o más conjuntos. | ||
Archivo:Mentefacto tipo A-2.png|''<u>P2.2.-</u> Toda intersección de conjuntos es operación que se le representa con el símbolo "∩".'' | Archivo:Mentefacto tipo A-2.png|''<u>P2.2.-</u> Toda intersección de conjuntos es operación que se le representa con el símbolo "∩".'' | ||
Archivo:Mentefacto tipo E.png|''<u>P3.1.-</u> Ninguna intersección de conjuntos es unión.'' | Archivo:Mentefacto tipo E.png|''<u>P3.1.-</u> Ninguna intersección de conjuntos es unión.'' | ||
Archivo:Mentefacto tipo E.png|<u>P3.2.-</u> Ninguna intersección de conjuntos es diferencia. | Archivo:Mentefacto tipo E.png|<u>P3.2.-</u> Ninguna intersección de conjuntos es diferencia. | ||
Línea 40: | Línea 37: | ||
'''''P1.- Toda intersección de conjuntos es operación entre conjuntos.''''' | '''''P1.- Toda intersección de conjuntos es operación entre conjuntos.''''' | ||
''<u>Argumentación.-</u>'' Porque la intersección de conjuntos es una operación que se puede realizar entre dos o más conjuntos, ya sean: abiertos, cerrados, semiabiertos, infinitos o universales. La cuál nos da como resultado todos los valores comunes entre los conjuntos en los que se realiza la operación. Es decir, la intersección es una operación que te da de resultado un conjunto que se rige a las propiedades de la operación realizada, entre las cuales tenemos: asociativa "<math>A\cap (B\cap C)=(A \cap B)\cap C</math>", conmutativa "<math>B\cap C=C \cap B</math>", indempotencia "<math>A\cap A=A</math>", universalidad "<math>R\cap A=A</math>" y conjunto vacío "<math>C\cap \varnothing=\varnothing</math>". | ''<u>Argumentación.-</u>'' Porque la intersección de conjuntos es una operación que se puede realizar entre dos o más conjuntos, ya sean: abiertos, cerrados, semiabiertos, infinitos o universales. La cuál nos da como resultado todos los valores comunes entre los conjuntos en los que se realiza la operación. Es decir, la intersección es una operación que te da de resultado un conjunto que se rige a las propiedades de la operación realizada, entre las cuales tenemos: asociativa "<math>A\cap (B\cap C)=(A \cap B)\cap C</math>", conmutativa "<math>B\cap C=C \cap B</math>", indempotencia "<math>A\cap A=A</math>", universalidad "<math>R\cap A=A</math>" y conjunto vacío "<math>C\cap \varnothing=\varnothing</math>".[[Archivo:Ejemplo3 interseccion.png|centro|miniaturadeimagen|369x369px|Intersección gráfico descriptivo.]]'''P2.1.- Toda intersección de conjuntos es operación que da un conjunto solución con los elementos comunes entre 2 o más conjuntos.''' | ||
'''P2.1.- Toda intersección de conjuntos es operación que da un conjunto solución con los elementos comunes entre 2 o más conjuntos.''' | |||
''<u>Argumentación.-</u>'' Porque la intersección de conjuntos es una operación que se puede realizar entre varios conjuntos, la cual tiene como objetivo encontrar los elementos comunes entre estos, pero, no siempre existirá un respuesta (conjunto vacío) o dará como respuesta un conjunto universal. Esta al igual que las otras operaciones y las propiedades de las inecuaciones, nos ayudarán a resolver inecuaciones puesto que en la misma se usa signos como mayor o menor que, en vez del igual. | ''<u>Argumentación.-</u>'' Porque la intersección de conjuntos es una operación que se puede realizar entre varios conjuntos, la cual tiene como objetivo encontrar los elementos comunes entre estos, pero, no siempre existirá un respuesta (conjunto vacío) o dará como respuesta un conjunto universal. Esta al igual que las otras operaciones y las propiedades de las inecuaciones, nos ayudarán a resolver inecuaciones puesto que en la misma se usa signos como mayor o menor que, en vez del igual. | ||
Línea 51: | Línea 46: | ||
''<u>Argumentación.-</u>'' Porque la intersección de conjuntos al igual que las otras operaciones, se le puede representar de forma: geométrica, matemática y de conjunto. En la caso de la forma geométrica se utiliza una recta que va desde menos infinito hasta más infinito, mientras que, en el caso de la formar de conjunto se utiliza el corchete abierto a un extremo abierto "]"y el corchete cerrado para referirnos a un extremo cerrado "[". Por otro lado, en la forma matemática se utilizan los símbolos "<math>\leq,<,>,\geq</math>" , donde se usa mayor igual o menor igual cuando el extremo del conjunto solución es cerrado, mientras que, se usa mayor o menor que cuando el extremo del conjunto solución es abierto. Donde en todos los casos usamos el símbolo "∩" para referirnos que estamos realizando una intersección | ''<u>Argumentación.-</u>'' Porque la intersección de conjuntos al igual que las otras operaciones, se le puede representar de forma: geométrica, matemática y de conjunto. En la caso de la forma geométrica se utiliza una recta que va desde menos infinito hasta más infinito, mientras que, en el caso de la formar de conjunto se utiliza el corchete abierto a un extremo abierto "]"y el corchete cerrado para referirnos a un extremo cerrado "[". Por otro lado, en la forma matemática se utilizan los símbolos "<math>\leq,<,>,\geq</math>" , donde se usa mayor igual o menor igual cuando el extremo del conjunto solución es cerrado, mientras que, se usa mayor o menor que cuando el extremo del conjunto solución es abierto. Donde en todos los casos usamos el símbolo "∩" para referirnos que estamos realizando una intersección | ||
[[Archivo:Ejemplo2 interseccion.png|centro|miniaturadeimagen|615x615px|Intersección con conjunto solución semiabierto.]] | [[Archivo:Ejemplo2 interseccion.png|centro|miniaturadeimagen|615x615px|Intersección con conjunto solución semiabierto.]] | ||
'''''P3.1.- Ninguna intersección de conjuntos es unión.''''' | '''''P3.1.- Ninguna intersección de conjuntos es unión.''''' | ||
Línea 62: | Línea 52: | ||
[[Archivo:Ejemplo1 interseccion.png|centro|miniaturadeimagen|592x592px|Unión de conjuntos]] | [[Archivo:Ejemplo1 interseccion.png|centro|miniaturadeimagen|592x592px|Unión de conjuntos]] | ||
'''''P3. | '''''P3.2.- Ninguna intersección de conjuntos es diferencia.''''' | ||
<u>Argumentación.-</u> Porque la diferencia te da un conjunto solución con todos los elementos del minuendo (primer conjunto) que no pertenecen al o los sustraendos (segundo conjunto o más). Por ejemplo, si el conjunto A contiene manzanas y plátanos, mientras que, el conjunto B contiene manzanas; la diferencia sería manzanas. | <u>Argumentación.-</u> Porque la diferencia te da un conjunto solución con todos los elementos del minuendo (primer conjunto) que no pertenecen al o los sustraendos (segundo conjunto o más). Por ejemplo, si el conjunto A contiene manzanas y plátanos, mientras que, el conjunto B contiene manzanas; la diferencia sería manzanas. | ||
[[Archivo:Ejemplo diferencia.png|centro|miniaturadeimagen|563x563px|Diferencia entre conjuntos]] | [[Archivo:Ejemplo diferencia.png|centro|miniaturadeimagen|563x563px|Diferencia entre conjuntos]] | ||
'''''P3. | '''''P3.3.- Ninguna intersección de conjuntos es complemento.''''' | ||
<u>Argumentación.-</u> Porque el complemento te da un conjunto solución con todos los elementos que no pertenecen a un conjunto cualesquiera. Está operación se caracteriza por realizarse con un solo conjunto, donde, los extremos del intervalo cambian al contrario. Por ejemplo, si un extremo de un conjunto es cerrado en el conjunto solución ese extremo sería abierto, y así viceversa. | <u>Argumentación.-</u> Porque el complemento te da un conjunto solución con todos los elementos que no pertenecen a un conjunto cualesquiera. Está operación se caracteriza por realizarse con un solo conjunto, donde, los extremos del intervalo cambian al contrario. Por ejemplo, si un extremo de un conjunto es cerrado en el conjunto solución ese extremo sería abierto, y así viceversa. |
Revisión del 12:52 19 abr 2023
Paquete proposicional.-
Supraordinada:
P1.- Toda intersección de conjuntos es operación entre conjuntos.
Isoordinadas:
P2.1.- Toda intersección de conjuntos es operación que da un conjunto solución con los elementos comunes entre 2 o más conjuntos.
P2.2.- Toda intersección de conjuntos es operación que se le representa con el símbolo "∩".
Exclusión:
P3.1.- Ninguna intersección de conjuntos es unión.
P3.2.- Ninguna intersección de conjuntos es diferencia.
P3.3.- Ninguna intersección de conjuntos es complemento.
Mentefactos proposicionales.-
Argumentaciones.-
P1.- Toda intersección de conjuntos es operación entre conjuntos.
Argumentación.- Porque la intersección de conjuntos es una operación que se puede realizar entre dos o más conjuntos, ya sean: abiertos, cerrados, semiabiertos, infinitos o universales. La cuál nos da como resultado todos los valores comunes entre los conjuntos en los que se realiza la operación. Es decir, la intersección es una operación que te da de resultado un conjunto que se rige a las propiedades de la operación realizada, entre las cuales tenemos: asociativa "", conmutativa "", indempotencia "", universalidad "" y conjunto vacío "".
P2.1.- Toda intersección de conjuntos es operación que da un conjunto solución con los elementos comunes entre 2 o más conjuntos.
Argumentación.- Porque la intersección de conjuntos es una operación que se puede realizar entre varios conjuntos, la cual tiene como objetivo encontrar los elementos comunes entre estos, pero, no siempre existirá un respuesta (conjunto vacío) o dará como respuesta un conjunto universal. Esta al igual que las otras operaciones y las propiedades de las inecuaciones, nos ayudarán a resolver inecuaciones puesto que en la misma se usa signos como mayor o menor que, en vez del igual.
P2.2.- Toda intersección de conjuntos es operación que se le representa con el símbolo "∩".
Argumentación.- Porque la intersección de conjuntos al igual que las otras operaciones, se le puede representar de forma: geométrica, matemática y de conjunto. En la caso de la forma geométrica se utiliza una recta que va desde menos infinito hasta más infinito, mientras que, en el caso de la formar de conjunto se utiliza el corchete abierto a un extremo abierto "]"y el corchete cerrado para referirnos a un extremo cerrado "[". Por otro lado, en la forma matemática se utilizan los símbolos "" , donde se usa mayor igual o menor igual cuando el extremo del conjunto solución es cerrado, mientras que, se usa mayor o menor que cuando el extremo del conjunto solución es abierto. Donde en todos los casos usamos el símbolo "∩" para referirnos que estamos realizando una intersección
P3.1.- Ninguna intersección de conjuntos es unión.
Argumentación.- Porque la unión te da un conjunto solución con todos los elementos comunes o no comunes entre 2 o más conjuntos. Es decir, la unión es aquella operación que une al conjunto A y B sin incluir a los elementos fuera de estos.
P3.2.- Ninguna intersección de conjuntos es diferencia.
Argumentación.- Porque la diferencia te da un conjunto solución con todos los elementos del minuendo (primer conjunto) que no pertenecen al o los sustraendos (segundo conjunto o más). Por ejemplo, si el conjunto A contiene manzanas y plátanos, mientras que, el conjunto B contiene manzanas; la diferencia sería manzanas.
P3.3.- Ninguna intersección de conjuntos es complemento.
Argumentación.- Porque el complemento te da un conjunto solución con todos los elementos que no pertenecen a un conjunto cualesquiera. Está operación se caracteriza por realizarse con un solo conjunto, donde, los extremos del intervalo cambian al contrario. Por ejemplo, si un extremo de un conjunto es cerrado en el conjunto solución ese extremo sería abierto, y así viceversa.
Referencias bibliográficas.-
- Academia Internet. (2019, September 30). Interseccion de conjuntos ejercicios resueltos. Www.youtube.com. https://www.youtube.com/watch?v=r9q4O1uEn4w
- Alex, P. (2008, November 12). Intersección de conjuntos. Www.youtube.com. https://www.youtube.com/watch?v=2OSlnP8Ki6k
- Colaboradores de los proyectos Wikimedia. (2004, September 24). concepto en teoría de conjuntos. Wikipedia.org; Wikimedia Foundation, Inc. https://es.wikipedia.org/wiki/Intersecci%C3%B3n_de_conjuntos
- Martínez, G. O. C. (2021, September 20). Álgebra Superior I: Intersecciones, uniones y complementos de conjuntos. El Blog de Leo. https://blog.nekomath.com/algebra-superior-i-ntersecciones-uniones-y-complementos-de-conjuntos/